Menu

1. Два маятника совершают колебания одном и том де месте Земли. Первый маятник за 20 с совершил 50 колебаний, а второй за 15 с - 75 колебаний. Длинна какого маятника больше и во сколько раз?

2.Частота колебаний струны равна 800 Гц. Сколько колебаний совершит точка струны за 0,2 мин? Какой путь проходит за это время точка струны, амплитуда колебаний которой равна 3 мм?

Лина маятника находится из формулы периода математического маятника.
T = 2*пи*корень квадратный (L / g)
для первого маятника T1 = 2*пи*корень квадратный (L1 / g) (1)
для второго T2 = 2*пи*корень квадратный (L2 / g) (2)
С другой стороны Т1 = t / n1 и Т2 = t / n2
подставляя значения периодов маятников в формулы (1) и (2), получаем
t / n1 = 2*пи*корень квадратный (L1 / g), выразим время t = 2*пи*n1*корень квадратный (L1 / g)
аналогично время второго t = 2*пи*n2*корень квадратный (L2 / g), так как время колебаний одно и тоже, то
2*пи*n1*корень квадратный (L1 / g) = 2*пи*n2*корень квадратный (L2 / g) или
n1*корень квадратный (L1 / g) = n2*корень квадратный (L2 / g)
n1 / n2 = корень квадратный ( L2 / L1) или L2 / L1 = (n1)^2 / (n2)^2. (3)
так число колебаний второго маятника больше, чем первого, то длина второго больше первого, т. Е.
L2 - L1 = 0,48, отсюда L2 = 0,48 + L1, подставляя это выражение в формулу (3) получим следующее
L1 = 0,48*n2^2 / (n1^2 - n2^2) = 0.27м тогда L2 = 0,48 + 0,27 =0,75м




ПОХОЖИЕ ЗАДАНИЯ: