Искусственный спутник Земли движется по круговой орбите в плоскости экватора в направлении вращения Земли. Чему равно наименьшее возможное отношение радиуса орбиты спутника к радиусу Земли, если он проходит периодически над точкой запуска ровно через трое суток? Ответ округлить до целых. Ускорение свободного падения Земли принять равным 10 м/с2. Радиус Земли 6400 км.
ДАНО
Радиус Земли R=6400 км.
Радиус орбиты спутника R1
Ускорение свободного падения Земли g=10 м/с2.
РЕШЕНИЕ
пусть угловая скорость вращения Земли -w
если спутник проходит периодически над точкой запуска ровно через трое суток
то угловая скорость вращения спутника w1=2/3*w
ускорение свободного падения в точке запуска
g=GM/R^2
V^2/R=GM/R^2
w^2*R=GM/R^2
w^2=GM/R^3 (1)- это квадрат угловой скорости точки запуска
w1^2=GM/R1^3 (2) -это квадрат угловой скорости спутника
разделим (2) на (1)
w1^2/w^2=GM/R1^3/GM/R^3
(w1/w)^2=(R/R1)^3
R1/R=(w/w1)^(2/3) -подставим сюда w1=2/3*w
R1/R=(w/(2/3*w))^(2/3)=(3/2)^(2/3)=(9/4)^(1/3)=1.31 =1
ОТВЕТ R1/R=1
ПОХОЖИЕ ЗАДАНИЯ: