Menu
Вагон массой 20т, движущийся со скоростью 0.5 м/с, встречает вагон массой 30т, движущийся навстречу первому со скоростью 0.2 м/с. Какова скорость вагона после упругого взаимодействия?


Будем считать, что оба вагона изменяют свои скорости на противоположные (в ином случае все выкладки так же будут верны, просто результирующие знаки скоростей окажутся отрицательными).
Обозначим массу и скорости до и после столкновения первого (малого вагона), как: m, v, u (искомая).
Обозначим массу и скорости до и после столкновения второго (большего вагона), как: M, V, U.
Импульс и энергия сохраняются, так что:
mv – MV = MU – mu ; ЗСИ
mv²/2 + MV²/2 = MU²/2 + mu²/2 ;   ЗСЭ
Соберём подобные:
m ( v + u ) = M ( U + V ) ;  
m ( v² – u² ) = M ( U² – V² ) ;
Разделим второе на первое:
v – u = U – V ;
U = V + v – u ;
Подставим это выражение в ЗСИ
mv – MV = M(V+v–u) – mu ;
mv – MV = MV + Mv – Mu – mu ;
Mu + mu = 2MV + Mv – mv ;
(M+m)u = 2MV + (M–m)v ;
u = [ 2MV + (M–m)v ] / [ M + m ] ;
u = [ 2V + (1–m/M)v ] / [ 1 + m/M ] ≈ [ 2*0.2 + (1–2/3)0.5 ] / [ 1 + 2/3 ] ≈ 0.34 м/с.
(в соответствии с начальным положением –
– вагон поедет в противоположную сторону)

ВТОРОЙ СПОСОБ (на пальцах):
Импульс одного (меньшего) вагона: 20*0.5 = 10 тм/с ;
Импульс другого (большего) вагона: 30*0.2 = 6 тм/с     – и он направлен противоположно движению меньшего вагона.
Общий импульс: 4 тм/с ;
Скорость всей системы (скорость центра масс) можно найти, разделив общий импульс системы вагонов на их общую массу:
4 тм/с : 50т = 0.08 м/с     – это скорость центра масс (СЦМ).
В системе СЦМ импульс системы равен нулю, а энергия сохраняется. Импульсы обоих вагонов, таким образом – равны в СЦМ по модулю, а значит, их скорости пропорциональны, и если бы одна из них по модулю увеличилась бы, то увеличилась бы и другая, а это невозможно в сиу сохранения энергии. Аналогично, скорости не могут и уменьшиться в СЦМ. Т. Е. Скорости вагонов в СЦМ сохранятся по модулю.
Ясно, что вагоны до упругого соударения/взаимодействия съезжаются, а после него – разъезжаются. А значит, в СЦМ меньший вагон станет двигаться в противоположную сторону с той же скоростью, что и до взаимодействия (как, в прочем, и другой вагон).
До взаимодействия, скорость меньшего вагона относительно СЦМ составляет 0.5–0.08=0.42 м/с.
После взаимодействия скорость меньшего вагона относительно СЦМ составит –0.42 м/с.
В системе связанной с землёй (в ЛСО) скорость вагона после взаимодействия станет равна: –0.42+0.08 = –0.34 м/с. Т. Е. Вагон будет катиться в противоположную сторону.
ВТОРОЙ СПОСОБ (строго):
Общий импульс до взаимодействия:
mv–MV ;
Через центр масс импульс системы выражается, как: (M+m)vц, откуда:
(M+m)vц = mv – MV ;
vц = [ mv – MV ] / [ M + m ] ;
Относительно СЦМ меньший вагон движется со скоростью:
v’ = v – vц ;
После взаимодействия скорость вагона в СЦМ изменится на противоположную и станет равна:
u’ = –v’ = vц – v ;
В ЛСО конечная скорость вагона:
u = u’ + vц = 2vц – v = 2 [ mv – MV ] / [ M + m ] – v =
= [ 2mv – 2MV – Mv – mv ] / [ M + m ] = [ (m–M)v – 2MV ] / [ M + m ] =
= – [ (1–m/M)v + 2V ] / [ 1 + m/M ] ;
u = – [ (1–m/M)v + 2V ] / [ 1 + m/M ] ≈ – [ (1–2/3)0.5 + 2*0.2 ] / [ 1 + 2/3 ] ≈ –0.34 м/с.


ПОХОЖИЕ ЗАДАНИЯ:
  • Вагон массы 50т движется со скоростью 12 кмч и встречает стоящую на пути платформу массы 30т. Найти скорость совместного движения вагона и платформы непосредственно после тог...
  • две задачи Задача№1 Скорость первой тележки до взаимодействия равна 2 м/с, скорость второй 3 м/с. После взаимодействия скорость первой тележки увеличилась на 3 м/с, а второй-...
  • ТЕМА ИМПУЛЬС 1)Найдите модуль импульса а) тела массой 10 кг, движущегося со скоростью 5м/с б)тела массой 5 кг, движущегося со скоростью 10м/с в)тела массой 1 кг, движущегос...
  • Мальчик массой 50 кг спрыгнул с неподвижной лодки массой 100 кг, расположенной в воде около берега. С какой скоростью отъехала лодка от берега, если скорость мальчика направл...
  • На тему "закон сохранения Импульса" На железнодорожной платформе установлено орудие. Масса платформы с орудием равна 15т. Орудие стреляет вверх под углом 60 к горизонту. С ка...