В идеальном колебательном контуре с частотой собственных колебаний v1= 20 кГц при замене конденсатора на другой частота стала равна v2= 30 кГц. Какой будет частота колебаний контура, если соединить эти два конденсатора параллельно?
по ф-ле Tомпсона
частота v=1/(2pi√(LC))
√C=1/(v2pi√L)
C=1/((v2pi)^2*L)
тогда
C1=1/((v1*2pi)^2*L)
C2=1/((v2*2pi)^2*L)
емкость сдвоенного конденсатора
С=С1+С2=1/((2pi)^2*L)*(1/v1^2+1/v2^2) (1)
частота с двойным конденсатором
v=1/(2pi√(LC))
v^2=1/((2pi)^2*LC))
подставим С из (1)
v^2=1/((2pi)^2*L)) * ((2pi)^2*L)*(1/v1^2+1/v2^2)
v^2= 1/v1^2+1/v2^2
из ф-лы видно, что квадрат частота равна сумме квадратов обратных величин частот при паралл. Соедин.
подставим числа
v^2=1/20^2+1/30^2=(9+4)/3600=13/60^2
v=√13/60=0,06 кГц = 60 Гц
ПОХОЖИЕ ЗАДАНИЯ: