Две гири массой 450г каждая подвесили на нити перекинутой через неподвижный блок на высоте 4.4м от поверхности земли. Через сколько времени одна из гирь достигнет поверхности земли если на неё положить без толчка груз массой 100г? Трением можно пренебречь
Не будем рассматривать груз как самостоятельное тело. Будем рассматривать новую систему из двух гирь, одна массой m = 450г, другая -массой M = 450+100 = 550 г.
Уравнения Ньютона для каждой из гирь в проекциях на направление движения:
T - mg = ma
Mg - T = Ma (Т - сила натяжения нити).
Сложим уравнения и найдем ускорение:
\( a\ =\ \frac{M-m}{M+m}*g \)
Теперь из уравнения кинематики равноускоренного движения найдем время:
\( h=\frac{at^2}{2},\ \ \ \ \ t\ =\ \sqrt{\frac{2h}{a}}=\sqrt{\frac{2h(M+m)}{g(M-m)}}=\ 3\ c. \)
Ответ: 3 с.
ПОХОЖИЕ ЗАДАНИЯ: